By Topic

A multiple model adaptive dual control algorithm for stochastic systems with unknown parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wenk, C.J. ; University of Connecticut, Storrs, Connecticut ; Bar-Shalom, Y.

An adaptive dual control algorithm is presented for linear stochastic systems with constant but unknown parameters. The system parameters are assumed to belong to a finite set on which a prior probability distribution is available. The tool used to derive the algorithm is preposterior analysis: a probabilistic characterization of the future adaptation process allows the controller to take advantage of the dual effect. The resulting actively adaptive control called Model Adaptive Dual (MAD) control is compared to two passively adaptive control algorithms - the Heuristic Certainty Equivalence (HCE) and the Deshpande-Upadhyay-Lainiotis (DUL) model-weighted controllers. An analysis technique developed for the comparison of different controllers is used to show statistically significant improvement in the performance of the MAD algorithm over those of the HCE and DUL.

Published in:

Decision and Control including the Symposium on Adaptive Processes, 1979 18th IEEE Conference on  (Volume:2 )

Date of Conference:

12-14 Dec. 1979