By Topic

The Medial Scaffold of 3D Unorganized Point Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frederic F. Leymarie ; Dept. of Comput., London Univ. ; Benjamin B. Kimia

We introduce the notion of the medial scaffold, a hierarchical organization of the medial axis of a 3D shape in the form of a graph constructed from special medial curves connecting special medial points. A key advantage of the scaffold is that it captures the qualitative aspects of shape in a hierarchical and tightly condensed representation. We propose an efficient and exact method for computing the medial scaffold based on a notion of propagation along the scaffold itself, starting from initial sources of the flow and constructing the scaffold during the propagation. We examine this method specifically in the context of an unorganized cloud of points in 3D, e.g., as obtained from laser range finders, which typically involve hundreds of thousands of points, but the ideas are generalizable to data arising from geometrically described surface patches. The computational bottleneck in the propagation-based scheme is in finding the initial sources of the flow. We thus present several ideas to avoid the unnecessary consideration of pairs of points which cannot possibly form a medial point source, such as the "visibility of a point from another given a third point and the interaction of clusters of points. An application of using the medial scaffold for the representation of point samplings of real-life objects is also illustrated

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:29 ,  Issue: 2 )