By Topic

Rapid Biologically-Inspired Scene Classification Using Features Shared with Visual Attention

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Siagian, C. ; Dept. of Comput. Sci., Southern California Univ., Los Angeles, CA ; Itti, L.

We describe and validate a simple context-based scene recognition algorithm for mobile robotics applications. The system can differentiate outdoor scenes from various sites on a college campus using a multiscale set of early-visual features, which capture the "gist" of the scene into a low-dimensional signature vector. Distinct from previous approaches, the algorithm presents the advantage of being biologically plausible and of having low-computational complexity, sharing its low-level features with a model for visual attention that may operate concurrently on a robot. We compare classification accuracy using scenes filmed at three outdoor sites on campus (13,965 to 34,711 frames per site). Dividing each site into nine segments, we obtain segment classification rates between 84.21 percent and 88.62 percent. Combining scenes from all sites (75,073 frames in total) yields 86.45 percent correct classification, demonstrating the generalization and scalability of the approach

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 2 )