Cart (Loading....) | Create Account
Close category search window
 

A Fast Biologically Inspired Algorithm for Recurrent Motion Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bayerl, P. ; Dept. of Neural Inf. Process., Ulm Univ. ; Neumann, H.

We have previously developed a neurodynamical model of motion segregation in cortical visual area V1 and MT of the dorsal stream. The model explains how motion ambiguities caused by the motion aperture problem can be solved for coherently moving objects of arbitrary size by means of cortical mechanisms. The major bottleneck in the development of a reliable biologically inspired technical system with real-time motion analysis capabilities based on this neural model is the amount of memory necessary for the representation of neural activation in velocity space. We propose a sparse coding framework for neural motion activity patterns and suggest a means by which initial activities are detected efficiently. We realize neural mechanisms such as shunting inhibition and feedback modulation in the sparse framework to implement an efficient algorithmic version of our neural model of cortical motion segregation. We demonstrate that the algorithm behaves similarly to the original neural model and is able to extract image motion from real world image sequences. Our investigation transfers a neuroscience model of cortical motion computation to achieve technologically demanding constraints such as real-time performance and hardware implementation. In addition, the proposed biologically inspired algorithm provides a tool for modeling investigations to achieve acceptable simulation time

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:29 ,  Issue: 2 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.