By Topic

A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haining Fan ; Dept. of Electr. & Comput. Eng., Waterloo Univ., Ont. ; Hasan, M.A.

Based on Toeplitz matrix-vector products and coordinate transformation techniques, we present a new scheme for subquadratic space complexity parallel multiplication in GF(2n) using the shifted polynomial basis. Both the space complexity and the asymptotic gate delay of the proposed multiplier are better than those of the best existing subquadratic space complexity parallel multipliers. For example, with n being a power of 2, the space complexity is about 8 percent better, while the asymptotic gate delay is about 33 percent better, respectively. Another advantage of the proposed matrix-vector product approach is that it can also be used to design subquadratic space complexity polynomial, dual, weakly dual, and triangular basis parallel multipliers. To the best of our knowledge, this is the first time that subquadratic space complexity parallel multipliers are proposed for dual, weakly dual, and triangular bases. A recursive design algorithm is also proposed for efficient construction of the proposed subquadratic space complexity multipliers. This design algorithm can be modified for the construction of most of the subquadratic space complexity multipliers previously reported in the literature

Published in:

Computers, IEEE Transactions on  (Volume:56 ,  Issue: 2 )