By Topic

SEVA: A Soft-Error- and Variation-Aware Cache Architecture

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hung, L.D. ; Graduate Sch. of Inf. Sci. & Technol., Tokyo Univ. ; Goshima, M. ; Sakai, S.

As SRAM devices are scaled down, the number of variation-induced defective memory cells increases rapidly. Combination of ECC, particularly SECDED, with a redundancy technique can effectively tolerate a high number of defects. While SECDED can repair a defective cell in a block, the block becomes vulnerable to soft errors. This paper proposes SEVA, an original soft-error- and variation-aware cache architecture. SEVA exploits SECDED to tolerate variation-induced defects while preserving high resilience against soft errors. Information about the defectiveness and data dirtiness is maintained for each SECDED block. SEVA allows only the clean data to be stored in defective (but still usable) blocks of a cache. An error occurring in a defective block can be detected and the correct data can be obtained from the lower level of the memory hierarchy. SEVA improves yield and reliability with low overheads

Published in:

Dependable Computing, 2006. PRDC '06. 12th Pacific Rim International Symposium on

Date of Conference:

Dec. 2006