By Topic

An Evaluation of Similarity Coefficients for Software Fault Localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abreu, R. ; Software Technol. Dept., Delft Univ. of Technol. ; Zoeteweij, P. ; van Gemund, A.J.C.

Automated diagnosis of software faults can improve the efficiency of the debugging process, and is therefore an important technique for the development of dependable software. In this paper we study different similarity coefficients that are applied in the context of a program spectral approach to software fault localization (single programming mistakes). The coefficients studied are taken from the systems diagnosis/automated debugging tools Pinpoint, Tarantula, and AMPLE, and from the molecular biology domain (the Ochiai coefficient). We evaluate these coefficients on the Siemens Suite of benchmark faults, and assess their effectiveness in terms of the position of the actual fault in the probability ranking of fault candidates produced by the diagnosis technique. Our experiments indicate that the Ochiai coefficient consistently outperforms the coefficients currently used by the tools mentioned. In terms of the amount of code that needs to be inspected, this coefficient improves 5% on average over the next best technique, and up to 30% in specific cases

Published in:

Dependable Computing, 2006. PRDC '06. 12th Pacific Rim International Symposium on

Date of Conference:

Dec. 2006