By Topic

A Multiscale and Multidirectional Image Denoising Algorithm Based on Contourlet Transform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bei-bei Li ; Jilin University, China ; Xin Li ; Shu-xun Wang ; Hai-feng Li

In this paper, we propose a novel image denoising algorithm in Contourlet domain. The Contourlet transform is adopted by virtual of its advantages over the Wavelet transform in order to obtain a flexible multiresolution, local, and directional image expansion using contour segments, it is good at isolating the smoothness along the contours. We present a weighing factor which submits to the negative exponential distribution, it can combine the hard thresholding function with the soft thresholding, the new thresholding function is continuous[4]. We adapt different thresholdings on different scales and different directions to get better denoising results. Experimental results demonstrate that the proposed algorithm improves the SNR on a certain extent.

Published in:

Intelligent Information Hiding and Multimedia Signal Processing, 2006. IIH-MSP '06. International Conference on

Date of Conference:

Dec. 2006