By Topic

Evolutionary Takagi-Sugeno Fuzzy Modelling for MR Damper

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Haiping Du ; University of Technology, Sydney, Australia ; Nong Zhang

This paper presents an approach for learning the Takagi-Sugeno (T-S) fuzzy model by Genetic Algorithm (GA). In this approach, the fuzzy rule structure is encoded by binary code in the chromosome in which the position of 1 indicates the selected rules and the sum of 1 indicates the number of rules. The membership function (MF) parameters (centres and bases) are evolved by GA in combining with the pseudo-inversion algorithm for obtaining the consequent parameters. The sum of squared error (SSE) between the true output and the T-S model prediction is used as objective function. Then, this approach is applied to the modelling of dynamic behaviour of a magneto-rheological (MR) damper which shows highly nonlinear characteristics due to hysteretic phenomenon. It is shown by the validation test that the developed T-S fuzzy model can represent the dynamic behaviour of the MR damper satisfactorily.

Published in:

2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)

Date of Conference:

Dec. 2006