By Topic

Dynamic Artificial Neural Networks for Centroid Prediction in Astronomy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Weddell, S.J. ; University of Canterbury, New Zealand ; Webb, R.Y.

Motivation for this research is the real-time restoration of faint astronomical images through turbulence over a large field-of-view. A simulation platform was developed to predict the centroid of a science object, convolved through multiple perturbation fields, and projected on to an image plane. Centroid data were selected from various source and target locations and used to train an artificial neural network to estimate centroids over a spatial grid, defined on the image plane. The capability of the network to learn to predict centroids over new target locations was assessed using a priori centroid data corresponding to selected grid locations. Various distortion fields were used in training and simulating the network including data collected from observation runs at a local observatory. Results from this work provide the basis for extensions and application to modal tomography.

Published in:

Hybrid Intelligent Systems, 2006. HIS '06. Sixth International Conference on

Date of Conference:

Dec. 2006