By Topic

Construction of Regular and Irregular LDPC Codes: Geometry Decomposition and Masking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jun Xu ; Marvell Semicond., Sunnyvale, CA ; Lei Chen ; Ivana Djurdjevic ; Shu Lin
more authors

Two algebraic methods for systematic construction of structured regular and irregular low-density parity-check (LDPC) codes with girth of at least six and good minimum distances are presented. These two methods are based on geometry decomposition and a masking technique. Numerical results show that the codes constructed by these methods perform close to the Shannon limit and as well as random-like LDPC codes. Furthermore, they have low error floors and their iterative decoding converges very fast. The masking technique greatly simplifies the random-like construction of irregular LDPC codes designed on the basis of the degree distributions of their code graphs

Published in:

IEEE Transactions on Information Theory  (Volume:53 ,  Issue: 1 )