By Topic

Generating pattern-recognition systems using evolutionary learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
L. A. Tamburino ; Avionic Directorate, Wright Lab., Wright-Patterson AFB, OH, USA ; M. A. Zmuda ; M. M. Rizki

The E-morph learning algorithm combines a number of learning algorithms-genetic, evolutionary programming, clustering-into a hybrid learning system for solving multiclass pattern-recognition problems. Our work also shows that a randomly generated pool of primitive detectors, rather than manually coded features, can be enhanced and assembled into effective solution sets

Published in:

IEEE Expert  (Volume:10 ,  Issue: 4 )