By Topic

A Scale Model for the Study of the LEMP Response of Complex Power Distribution Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Piantini, A. ; Inst. of Electrotechnics & Energy, Sao Paulo Univ. ; Janiszewski, J.M. ; Borghetti, A. ; Nucci, C.A.
more authors

This paper deals with scale models of power distribution systems for the study of lightning induced voltages on overhead lines. The scale model technique is useful for the investigation of situations which are prohibitively complex to be treated theoretically. For instance, urban distribution networks are usually characterized not only by complex topologies but also by the presence of nearby buildings, whose influence on the lightning induced effects can be successfully evaluated by means of reduced models. The paper first describes the scale model implemented for such a purpose at the University of Sao Paulo, Sao Paulo, Brazil. It then presents a comparison between the experimental data obtained with the scale model and the computer simulations obtained by using the LIOV-EMTP code, a software tool able of calculating lightning-induced electromagnetic transients in distribution systems having complex configurations. Finally, the paper shows an application of the scale model in the evaluation of lightning induced voltages on distribution networks considering the presence of nearby buildings

Published in:

Power Delivery, IEEE Transactions on  (Volume:22 ,  Issue: 1 )