By Topic

Finding the Direction of Disturbance Propagation in a Chemical Process Using Transfer Entropy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Margret Bauer ; Dept. of Electron. & Electr. Eng., Univ. Coll. London ; John W. Cox ; Michelle H. Caveness ; James J. Downs
more authors

In continuous chemical processes, variations of process variables usually travel along propagation paths in the direction of the control path and process flow. This paper describes a data-driven method for identifying the direction of propagation of disturbances using historical process data. The novel concept is the application of transfer entropy, a method based on the conditional probability density functions that measures directionality of variation. It is sensitive to directionality even in the absence of an observable time delay. Its performance is studied in detail and default settings for the parameters in the algorithm are derived so that it can be applied in a large scale setting. Two industrial case studies demonstrate the method

Published in:

IEEE Transactions on Control Systems Technology  (Volume:15 ,  Issue: 1 )