By Topic

Micromachined Vibratory Gyroscopes Controlled by a High-Order Bandpass Sigma-Delta Modulator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yufeng Dong ; Sch. of Electron. & Comput. Sci., Southampton Univ. ; Kraft, M. ; Redman-White, W.

This work reports on the design of novel closed-loop control systems for the sense mode of a vibratory-rate gyroscope based on a high-order sigma-delta modulator (SigmaDeltaM). A low-pass and two distinctive bandpass topologies are derived, and their advantages discussed. So far, most closed-loop force-feedback control systems for these sensors were based on low-pass SigmaDeltaM's. Usually, the sensing element of a vibratory gyroscope is designed with a high quality factor Q to increase the sensitivity and, hence, can be treated as a mechanical resonator. Furthermore, the output characteristic of vibratory rate gyroscopes is narrowband amplitude-modulated signal. Therefore, a bandpass SigmaDeltaM is a more appropriate control strategy for a vibratory gyroscope than a low-pass SigmaDeltaM. Using a high-order bandpass SigmaDeltaM, the control system can adopt a much lower sampling frequency compared with a low-pass SigmaDeltaM while achieving a similar noise floor for a given oversampling ratio (OSR). In addition, a control system based on a high-order bandpass SigmaDeltaM is superior as it not only greatly shapes the quantization noise, but also alleviates tonal behavior, as is often seen in low-order SigmaDeltaM control systems, and has good immunities to fabrication tolerances and parameter mismatch. These properties are investigated in this study at system level

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 1 )