Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

A Requirements Driven Framework for Benchmarking Semantic Web Knowledge Base Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo, Yuanbo ; Comput. Sci. & Eng. Dept., Lehigh Univ., Bethlehem, PA ; Qasem, A. ; Zhengxiang Pan ; Heflin, J.

A key challenge for the semantic Web is to acquire the capability to effectively query large knowledge bases. As there will be several competing systems, we need benchmarks that will objectively evaluate these systems. Development of effective benchmarks in an emerging domain is a challenging endeavor. In this paper, we propose a requirements driven framework for developing benchmarks for semantic Web knowledge base systems (SW KBSs). In this paper, we make two major contributions. First, we provide a list of requirements for SW KBS benchmarks. This can serve as an unbiased guide to both the benchmark developers and personnel responsible for systems acquisition and benchmarking. Second, we provide an organized collection of techniques and tools needed to develop such benchmarks. In particular, the collection contains a detailed guide for generating benchmark workload, defining performance metrics, and interpreting experimental results

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 2 )