By Topic

A Semantic Web-Based Approach to Knowledge Management for Grid Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liming Chen ; Sch. of Comput. & Math., Ulster Univ., Jordanstown ; Shadbolt, N.R. ; Goble, C.A.

Knowledge has become increasingly important to support intelligent process automation and collaborative problem solving in large-scale science over the Internet. This paper addresses distributed knowledge management, its approach and methodology, in the context of grid application. We start by analyzing the nature of grid computing and its requirements for knowledge support; then, we discuss knowledge characteristics and the challenges for knowledge management on the grid. A semantic Web-based approach is proposed to tackle the six challenges of the knowledge lifecycle - namely, those of acquiring, modeling, retrieving, reusing, publishing, and maintaining knowledge. To facilitate the application of the approach, a systematic methodology is conceived and designed to provide a general implementation guideline. We use a real-world Grid application, the GEODISE project, as a case study in which the core semantic Web technologies such as ontologies, semantic enrichment, and semantic reasoning are used for knowledge engineering and management. The case study has been fully implemented and deployed through which the evaluation and validation for the approach and methodology have been performed

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 2 )