Cart (Loading....) | Create Account
Close category search window
 

Mining Generalized Associations of Semantic Relations from Textual Web Content

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Jiang ; Sch. of Comput. Eng., Nanyang Technol. Univ. ; Ah-Hwee Tan ; Ke Wang

Traditional text mining techniques transform free text into flat bags of words representation, which does not preserve sufficient semantics for the purpose of knowledge discovery. In this paper, we present a two-step procedure to mine generalized associations of semantic relations conveyed by the textual content of Web documents. First, RDF (resource description framework) metadata representing semantic relations are extracted from raw text using a myriad of natural language processing techniques. The relation extraction process also creates a term taxonomy in the form of a sense hierarchy inferred from WordNet. Then, a novel generalized association pattern mining algorithm (GP-Close) is applied to discover the underlying relation association patterns on RDF metadata. For pruning the large number of redundant overgeneralized patterns in relation pattern search space, the GP-Close algorithm adopts the notion of generalization closure for systematic overgeneralization reduction. The efficacy of our approach is demonstrated through empirical experiments conducted on an online database of terrorist activities

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 2 )

Date of Publication:

Feb. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.