By Topic

Generation of Polynomial Discriminant Functions for Pattern Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Specht, Donald F. ; Lockheed Palo Alto Research Lab., Palo Alto, Calif.

A practical method of determining weights for crossproduct and power terms in the variable inputs to an adaptive threshold element used for statistical pattern classification is derived. The objective is to make it possible to realize general nonlinear decision surfaces, in contrast with the linear (hyperplanar) decision surfaces that can be realized by a threshold element using only first-order terms as inputs. The method is based on nonparametric estimation of a probability density function for each category to be classified so that the Bayes decision rule can be used for classification. The decision surfaces thus obtained have good extrapolating ability (from training patterns to test patterns) even when the number of training patterns is quite small. Implementation of the method, both in the form of computer programs and in the form of polynomial threshold devices, is discussed, and some experimental results are described.

Published in:

Electronic Computers, IEEE Transactions on  (Volume:EC-16 ,  Issue: 3 )