By Topic

A Dynamic Large Signal Model for a Single-Domain Thin Magnetic Film Inductor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Read, Alvin A. ; Electrical Engineering, Department and Engineering Experiment Station, Iowa State University of Science and Technology, Ames, Iowa.

A dynamic large signal model for a thin film inductor consisting of two orthogonal windings wound around a thin single-domain film is developed. Based on Gilbert's modification of the Landau-Lifshitz equation describing the rotational behavior of the magnetization of the film, this model is valid for both large and small signals and for frequencies up to several hundred megacycles. As a result of the gyroscopic nature of mangetic behavior, the model of necessity contains as a part of its description a nonlinear second order differential equation in time. Until the external circuits connected to the inductor are specified, one cannot explicitly relate magnetic behavior and terminal voltages and currents. Instead one must seek a simultaneous solution of the differential equations describing the interconnected system. The utility of this model for analytically describing the behavior of thin film parametric devices such as parametrons, parametric amplifiers, balanced modulators, and flip-flops is mentioned but not discussed in detail.

Published in:

Electronic Computers, IEEE Transactions on  (Volume:EC-12 ,  Issue: 5 )