By Topic

Model-based phase velocity and attenuation estimation in wideband ultrasonic measurement systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

A parametric method to estimate frequency-dependent phase velocity and attenuation is presented in this paper. The parametric method is compared with standard nonparametric Fourier analysis techniques using numerical simulations as well as real pulse-echo experiments. Approximate standard deviations are derived for both methods and validated with numerical simulations. Compared to standard Fourier analysis, the parametric model gives considerably lower variance when estimating attenuation and phase velocity. In contrast to nonparametric techniques, the proposed estimator avoids the phase unwrapping problem because analytical expressions for the continuous phase velocity and attenuation can be derived

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:54 ,  Issue: 1 )