Cart (Loading....) | Create Account
Close category search window

Micromachined thin film plate acoustic resonators utilizing the lowest order symmetric lamb wave mode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yantchev, V. ; Dept. of Solid State Electron., Uppsala Univ. ; Katardjiev, I.

Thin film integrated circuits compatible resonant structures using the lowest order symmetric Lamb wave propagating in thin aluminum nitride (AlN) film membranes have been studied. The 2-mum thick, highly c-oriented AlN piezoelectric films have been grown on silicon by pulsed, direct-current magnetron reactive sputter deposition. The films were deposited at room temperature and had typical full-width, half-maximum value of the rocking curve of about 2 degrees. Thin film plate acoustic resonators were designed and micromachined using low resolution photolithography and deep silicon etching. Plate waves, having a 12-mum wavelength, were excited by means of both interdigital (IDT) and longitudinal wave transducers using lateral field excitation (LW-LFE), and reflected by periodical aluminum-strip gratings deposited on top of the membrane. The existence of a frequency stopband and strong grating reflectivity have been theoretically predicted and experimentally observed. One-port resonator designs having varying cavity lengths and transducer topology were fabricated and characterized. A quality factor exceeding 3000 has been demonstrated at frequencies of about 885 MHz. The IDT based film plate acoustic resonators (FPAR) technology proved to be preferable when lower costs and higher Qs are pursued. The LW-LFE-based FPAR technology offers higher excitation efficiency at costs comparable to that of the thin film bulk acoustic wave resonator (FBAR) technology

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:54 ,  Issue: 1 )

Date of Publication:

January 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.