By Topic

Hybrid damping of smart, functionally graded plates using piezoelectric, fiber-reinforced composites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Manas C. Ray ; Dept. of Mech. Eng., Indian Inst. of Technol., Kharagpur

This paper deals with the investigation of active, constrained layer damping (ACLD) of smart, functionally graded (FG) plates. The constraining layer of the ACLD treatment is considered to be made of a piezoelectric, fiber-reinforced composite (PFRC) material with enhanced effective piezoelectric coefficient that quantifies the in-plane actuating force due to the electric field applied across the thickness of the layer. The Young's modulus and the mass density of the FG plates are assumed to vary exponentially along the thickness of the plate, and the Poisson's ratio is assumed to be constant over the domain of the plate. A finite-element model has been developed to model the open-loop and closed-loop dynamics of the FG plates integrated with two patches of ACLD treatment. The frequency response of the plates revealed that the active patches of ACLD treatment significantly improve the damping characteristics of the FG plates over the passive damping. Emphasis has been placed on investigating the effect of variation of piezoelectric fiber angle in the constraining layer of the ACLD treatment on the attenuating capability of the patches. The analysis also revealed that the activated patches of the ACLD treatment are more effective in controlling the vibrations of FG plates when the patches are attached to the surface of the FG plates with minimum stiffness than when they are attached to the surface of the same with maximum stiffness

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:53 ,  Issue: 11 )