Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. For technical support, please contact us at onlinesupport@ieee.org. We apologize for any inconvenience.
By Topic

Householder CORDIC algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Shen-Fu Hsiao ; Inst. of Comput. & Inf. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung, Taiwan ; Delosme, J.-M.

Matrix computations are often expressed in terms of plane rotations, which may be implemented using COordinate Rotation Digital Computer (CORDIC) arithmetic. As matrix sizes increase multiprocessor systems employing traditional CORDIC arithmetic, which operates on two-dimensional (2D) vectors, become unable to achieve sufficient speed. Speed may be increased by expressing the matrix computations in terms of higher dimensional rotations and implementing these rotations using novel CORDIC algorithms-called Householder CORDIC-that extend CORDIC arithmetic to arbitrary dimensions. The method employed to prove the convergence of these multidimensional algorithms differs from the one used in the 2D case. After a discussion of scaling factor decomposition, range extension and numerical errors, VLSI implementations of Householder CORDIC processors are presented and their speed and area are estimated. Finally, some applications of the Householder CORDIC algorithms are listed

Published in:

Computers, IEEE Transactions on  (Volume:44 ,  Issue: 8 )