By Topic

Applying Supervised Classifiers Based on Non-negative Matrix Factorization to Musical Instrument Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Benetos, E. ; Dept. of Informatics, Aristotle Univ. of Thessaloniki ; Kotti, M. ; Kotropoulos, C.

In this paper, a new approach for automatic audio classification using non-negative matrix factorization (NMF) is presented. Training is performed onto each audio class individually, whilst during the test phase each test recording is projected onto the several training matrices. Experiments demonstrating the efficiency of the proposed approach were performed for musical instrument classification. Several perceptual features as well as MPEG-7 descriptors were measured for 300 sound recordings consisting of 6 different musical instrument classes. Subsets of the feature set were selected using branch-and-bound search, in order to obtain the most discriminating features for classification. Several NMF techniques were utilized, namely the standard NMF method, the local NMF, and the sparse NMF. The experiments demonstrate an almost perfect classification (classification error 1.0%), outperforming the state-of-the-art techniques tested for the aforementioned experiment

Published in:

Multimedia and Expo, 2006 IEEE International Conference on

Date of Conference:

9-12 July 2006