By Topic

Using Decision-Tree to Automatically Construct Learned-Heuristics for Events Classification in Sports Video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tjondronegoro, D. ; Sch. of Inf. Syst., Queensland Univ. of Technol., Brisbane, Qld. ; Chen, Y.-P.P.

Automatic events classification is an essential requirement for constructing an effective sports video summary. It has become a well-known theory that the high-level semantics in sport video can be "computationally interpreted" based on the occurrences of specific audio and visual features which can be extracted automatically. State-of-the-art solutions for features-based event classification have only relied on either manual-knowledge based heuristics or machine learning. To bridge the gaps, we have successfully combined the two approaches by using learning-based heuristics. The heuristics are constructed automatically using decision tree while manual supervision is only required to check the features and highlight contained in each training segment. Thus, fully automated construction of classification system for sports video events has been achieved. A comprehensive experiment on 10 hours video dataset, with five full-match soccer and five full-match basketball videos, has demonstrated the effectiveness/robustness of our algorithms

Published in:

Multimedia and Expo, 2006 IEEE International Conference on

Date of Conference:

9-12 July 2006