Cart (Loading....) | Create Account
Close category search window

A Tempo Feature via Modulation Spectrum Analysis and its Application to Music Emotion Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)

This paper proposes a tempo feature extraction method based on the long-term modulation spectrum analysis. To transform the modulation spectrum to a condensed feature vector, the log-scale modulation frequency coefficients are introduced. This idea aims at averaging the modulation frequency energy via the constant-Q filter-banks. Further it is pointed out that the feature can be extracted directly from the perceptually compressed data of digital music archives. To verify the effectiveness of the feature and its utility to music applications, the feature vector is used in a music emotion classification system. The system consisting two layers of Adaboost classifiers. In the first layer the conventional timbre features are employed. Then by adding the tempo feature in the second layer, the classification precision is improved dramatically. By this way the discriminability of the classifier based on the given features can be exploited extremely. The system obtains high classification precision on a small corpus. It proves that the proposed feature is very effective and computationally efficient to characterize the tempo information of music

Published in:

Multimedia and Expo, 2006 IEEE International Conference on

Date of Conference:

9-12 July 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.