By Topic

Disparity-Based 3D Face Modeling using 3D Deformable Facial Mask for 3D Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ansari, A.-N. ; Dept. of Electr. & Comput. Eng., Miami Univ., Coral Gables, FL ; Abdel-Mottaleb, M. ; Mahoor, M.H.

We present an automatic disparity-based approach for 3D face modeling, from two frontal and one profile view stereo images, for 3D face recognition applications. Once the images are captured, the algorithm starts by extracting selected 2D facial features from one of the frontal views and computes a dense disparity map from the two frontal images. Using the extracted 2D features plus their corresponding disparities in the disparity map, we compute their 3D coordinates. We next align a low resolution 3D mesh model to the 3D features, re-project its vertices on the frontal 2D image and adjust its profile line vertices using the profile view. We increase the resolutions of the resulting 2D model only at its center region to obtain a facial mask model covering distinctive features of the face. The computation of the 2D vertices coordinates with their disparities results in a deformed 3D model mask specific to a give subject face. Application of the model in 3D face recognition validates the algorithm and shows a high recognition rate

Published in:

Multimedia and Expo, 2006 IEEE International Conference on

Date of Conference:

9-12 July 2006