By Topic

Detecting Image Splicing using Geometry Invariants and Camera Characteristics Consistency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-feng Hsu ; Department of Electrical Engineering, Columbia University, ; Shih-fu Chang

Recent advances in computer technology have made digital image tampering more and more common. In this paper, we propose an authentic vs. spliced image classification method making use of geometry invariants in a semi-automatic manner. For a given image, we identify suspicious splicing areas, compute the geometry invariants from the pixels within each region, and then estimate the camera response function (CRF) from these geometry invariants. The cross-fitting errors are fed into a statistical classifier. Experiments show a very promising accuracy, 87%, over a large data set of 363 natural and spliced images. To the best of our knowledge, this is the first work detecting image splicing by verifying camera characteristic consistency from a single-channel image

Published in:

2006 IEEE International Conference on Multimedia and Expo

Date of Conference:

9-12 July 2006