By Topic

Clustering-Based Analysis of Semantic Concept Models for Video Shots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Koskela, M. ; Centre for Digital Video Process., Dublin City Univ. ; Smeaton, A.F.

In this paper we present a clustering-based method for representing semantic concepts on multimodal low-level feature spaces and study the evaluation of the goodness of such models with entropy-based methods. As different semantic concepts in video are most accurately represented with different features and modalities, we utilize the relative model-wise confidence values of the feature extraction techniques in weighting them automatically. The method also provides a natural way of measuring the similarity of different concepts in a multimedia lexicon. The experiments of the paper are conducted using the development set of the TRECVID 2005 corpus together with a common annotation for 39 semantic concepts

Published in:

Multimedia and Expo, 2006 IEEE International Conference on

Date of Conference:

9-12 July 2006