By Topic

Sudocodes ߝ Fast Measurement and Reconstruction of Sparse Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sarvotham, Shriram ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX ; Baron, D. ; Baraniuk, R.G.

Sudocodes are a new scheme for lossless compressive sampling and reconstruction of sparse signals. Consider a sparse signal x isin RopfN containing only K Lt N non-zero values. Sudo-encoding computes the codeword via the linear matrix-vector multiplication y = Phix, with K < M Lt N. We propose a non-adaptive construction of a sparse Phi comprising only the values 0 and 1; hence the computation of y involves only sums of subsets of the elements of x. An accompanying sudodecoding strategy efficiently recovers x given y. Sudocodes require only M = O(Klog(N)) measurements for exact reconstruction with worst-case computational complexity O(Klog(K) log(N)). Sudocodes can be used as erasure codes for real-valued data and have potential applications in peer-to-peer networks and distributed data storage systems. They are also easily extended to signals that are sparse in arbitrary bases

Published in:

Information Theory, 2006 IEEE International Symposium on

Date of Conference:

9-14 July 2006