By Topic

Joint Universal Lossy Coding and Identification of I.I.D. Vector Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Maxim Raginsky ; Beckman Institute and the University of Illinois, 405 N Mathews Ave, Urbana, IL 61801, USA. Email:

The problem of joint universal source coding and modeling, addressed by Rissanen in the context of lossless codes, is generalized to fixed-rate lossy coding of continuous-alphabet memoryless sources. We show that, for bounded distortion measures, any compactly parametrized family of i.i.d. real vector sources with absolutely continuous marginals (satisfying appropriate smoothness and Vapnik-Chervonenkis learnability conditions) admits a joint scheme for universal lossy block coding and parameter estimation, and give nonasymptotic estimates of convergence rates for distortion redundancies and variational distances between the active source and the estimated source. We also present explicit examples of parametric sources admitting such joint universal compression and modeling schemes

Published in:

2006 IEEE International Symposium on Information Theory

Date of Conference:

9-14 July 2006