Cart (Loading....) | Create Account
Close category search window
 

Exploratory Visualization of Multivariate Data with Variable Quality

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xie Zaixian ; Dept. of Comput. Sci., Worcester Polytech. Inst., MA ; Huang Shiping ; Ward, M.O. ; Rundensteiner, E.A.

Real-world data is known to be imperfect, suffering from various forms of defects such as sensor variability, estimation errors, uncertainty, human errors in data entry, and gaps in data gathering. Analysis conducted on variable quality data can lead to inaccurate or incorrect results. An effective visualization system must make users aware of the quality of their data by explicitly conveying not only the actual data content, but also its quality attributes. While some research has been conducted on visualizing uncertainty in spatio-temporal data and univariate data, little work has been reported on extending this capability into multivariate data visualization. In this paper we describe our approach to the problem of visually exploring multivariate data with variable quality. As a foundation, we propose a general approach to defining quality measures for tabular data, in which data may experience quality problems at three granularities: individual data values, complete records, and specific dimensions. We then present two approaches to visual mapping of quality information into display space. In particular, one solution embeds the quality measures as explicit values into the original dataset by regarding value quality and record quality as new data dimensions. The other solution is to superimpose the quality information within the data visualizations using additional visual variables. We also report on user studies conducted to assess alternate mappings of quality attributes to visual variables for the second method. In addition, we describe case studies that expose some of the advantages and disadvantages of these two approaches

Published in:

Visual Analytics Science And Technology, 2006 IEEE Symposium On

Date of Conference:

Oct. 31 2006-Nov. 2 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.