Cart (Loading....) | Create Account
Close category search window

Toward a Multi-Analyst, Collaborative Framework for Visual Analytics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

We describe a framework for the display of complex, multidimensional data, designed to facilitate exploration, analysis, and collaboration among multiple analysts. This framework aims to support human collaboration by making it easier to share representations, to translate from one point of view to another, to explain arguments, to update conclusions when underlying assumptions change, and to justify or account for decisions or actions. Multidimensional visualization techniques are used with interactive, context-sensitive, and tunable graphs. Visual representations are flexibly generated using a knowledge representation scheme based on annotated logic; this enables not only tracking and fusing different viewpoints, but also unpacking them. Fusing representations supports the creation of multidimensional meta-displays as well as the translation or mapping from one point of view to another. At the same time, analysts also need to be able to unpack one another's complex chains of reasoning, especially if they have reached different conclusions, and to determine the implications, if any, when underlying assumptions or evidence turn out to be false. The framework enables us to support a variety of scenarios as well as to systematically generate and test experimental hypotheses about the impact of different kinds of visual representations upon interactive collaboration by teams of distributed analysts

Published in:

Visual Analytics Science And Technology, 2006 IEEE Symposium On

Date of Conference:

Oct. 31 2006-Nov. 2 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.