By Topic

Kernels and Multiple Windows for Estimation of the Wigner-Ville Spectrum of Gaussian Locally Stationary Processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Patrik Wahlberg ; Sch. of Electr. Eng. & Comput. Sci., Univ. of Newcastle, Callaghan, NSW ; Maria Hansson

This paper treats estimation of the Wigner-Ville spectrum (WVS) of Gaussian continuous-time stochastic processes using Cohen's class of time-frequency representations of random signals. We study the minimum mean square error estimation kernel for locally stationary processes in Silverman's sense, and two modifications where we first allow chirp multiplication and then allow nonnegative linear combinations of covariances of the first kind. We also treat the equivalent multitaper estimation formulation and the associated problem of eigenvalue-eigenfunction decomposition of a certain Hermitian function. For a certain family of locally stationary processes which parametrizes the transition from stationarity to nonstationarity, the optimal windows are approximately dilated Hermite functions. We determine the optimal coefficients and the dilation factor for these functions as a function of the process family parameter

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 1 )