By Topic

Time-Domain Signal Analysis Using Adaptive Notch Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mojiri, M. ; Fac. of Eng., Kashan Univ., Isfahan ; Karimi-Ghartemani, M. ; Bakhshai, A.

Noise reduction and signal decomposition are among important and practical issues in time-domain signal analysis. This paper presents an adaptive notch filter (ANF) to achieve both these objectives. For noise reduction purpose, the proposed adaptive filter successfully extracts a single sinusoid of a possibly time-varying nature from a noise-corrupted signal. The paper proceeds with introducing a chain of filters which is capable of estimating the fundamental frequency of a signal composed of harmonically related sinusoids, and of decomposing it into its constituent components. The order of differential equations governing this algorithm is 2n+1, where n is the number of constituent sinusoids that should be extracted. Stability analysis of the proposed algorithm is carried out based on the application of the local averaging theory under the assumption of slow adaptation. When compared with the conventional Fourier analysis, the proposed method provides instantaneous values of the constituting components. Moreover, it is adaptive with respect to the fundamental frequency of the signal. Simulation results verify the validity of the presented algorithm and confirm its desirable transient and steady-state performances as well as its desirable noise characteristics

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 1 )