Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Raise Your Voice at a Proper Pace to Synchronize in Multiple Ad Hoc Piconets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xiliang Luo ; Dept. of Electr. & Comput. Eng., Minnesota Univ. ; Giannakis, G.B.

Timing synchronization of symbol boundaries is known to affect critically the performance of all coherent communication systems. Its effects are particularly pronounced in contemporary wireless technologies including ultrawideband (UWB) radios and wireless sensor networks (WSNs), where cooperative or ad hoc access is challenged by arbitrary asynchronism, intersymbol interference (ISI), receiver noise, as well as inter and intrapiconet interference arising from concurrently communicating nodes. To cope with these challenges, this paper introduces piconet-specific synchronization patterns and simple averaging operations at the receiving ends, which enable low-complexity timing acquisition through energy detection and demodulation by matching to a synchronized aggregate template (SAT). Pattern sequences are designed for both training-based and blind operation. Either way, the idea behind these designs is to periodically increase the transmit-power ("voice") of each piconet's synchronizing node with a period ("pace") characteristic of each piconet. Performance of the novel synchronization protocols is tested with simulations conforming to an UWB wireless personal area network (WPAN) setup

Published in:

Signal Processing, IEEE Transactions on  (Volume:55 ,  Issue: 1 )