By Topic

SEU Error Signature Analysis of Gbit/s SiGe Logic Circuits Using a Pulsed Laser Microprobe

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

15 Author(s)
Akil K. Sutton ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Ramkumar Krithivasan ; Paul W. Marshall ; Martin A. Carts
more authors

We present, for the first time, an analysis of the error signatures captured during pulsed laser microprobe testing of high-speed digital SiGe logic circuits. 127-bit shift registers, configured using various circuit level latch hardening schemes and incorporated into the circuit for radiation effects self test serve as the primary test vehicle. Our results indicate significant variations in the observed upset rate as a function of strike location and latch architecture. Error information gathered on the sensitive transistor nodes within the latches and characteristic upset durations agree well with recently reported heavy-ion microprobe data. These results support the growing credibility in using pulsed laser testing as a lower-cost alternative to heavy-ion microprobe analysis of sensitive device and circuit nodes, as well as demonstrate the efficiency of the autonomous detection and error approach for high speed bit-error rate testing. Implications for SEU hardening in SiGe are addressed and circuit-level and device-level Radiation Hardening By Design recommendations are made

Published in:

IEEE Transactions on Nuclear Science  (Volume:53 ,  Issue: 6 )