By Topic

Substrate Engineering Concepts to Mitigate Charge Collection in Deep Trench Isolation Technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Jonathan A. Pellish ; Dept. of Electr. Eng. & Comput. Sci., Vanderbilt Univ., Nashville, TN ; Robert A. Reed ; Ronald D. Schrimpf ; Michael L. Alles
more authors

Delayed charge collection from ionizing events outside the deep trench can increase the SEU cross section in deep trench isolation technologies. Microbeam test data and device simulations demonstrate how this adverse effect can be mitigated through substrate engineering techniques. The addition of a heavily doped p-type charge-blocking buried layer in the substrate can reduce the delayed charge collection from events that occur outside the deep trench isolation by almost an order of magnitude, implying an approximately comparable reduction in the SEU cross section

Published in:

IEEE Transactions on Nuclear Science  (Volume:53 ,  Issue: 6 )