By Topic

Design and Testing of a Position-Sensitive Plastic Scintillator Detector for Fast Neutron Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Ulisse Bravar ; Space Sci. Center, New Hampshire Univ., Durham, NH ; Paul J. Bruillard ; Erwin O. Flckiger ; John R. Macri
more authors

We describe the design and performance of a position sensitive scintillator detector developed for neutron measurements. Several of these detectors are to be used in the assembly of the Fast Neutron Imaging Telescope (FNIT), an instrument with imaging and energy measurement capabilities, sensitive to neutrons in the 2-20 MeV energy range. FNIT was initially conceived to study solar neutrons as a candidate instrument for the Inner Heliospheric Sentinels (IHS) program under formulation at NASA. It is now being adapted to locate Special Nuclear Material (SNM) for homeland security purposes by detecting fission neutrons and reconstructing the image of their source. The detection principle is based on multiple elastic neutron-proton scatterings in organic scintillator. The detector presented here utilizes wavelength-shifting (WLS) fibers, grooved into the plastic scintillator and read out by multianode photomultiplier tubes (MAPMTs) to determine scattering locations. By also measuring the recoil proton and scattered neutron's energies, the direction and energy spectrum of incident neutrons can be determined and discrete sources identified

Published in:

IEEE Transactions on Nuclear Science  (Volume:53 ,  Issue: 6 )