Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

A Bench Top Railgun With Distributed Energy Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Mankowski, J. ; Center for Pulsed Power & Power Electron., Texas Tech. Univ., Lubbock, TX ; Dickens, J. ; Giesselmann, M. ; McDaniel, B.
more authors

Experimental results of a distributed energy source railgun are presented. Distributed energy source railguns were first proposed by Marshal in an asynchronous scheme and later by Parker synchronously. Both schemes employ a "traveling excitation wave" to push the projectile along the rail. The primary advantages of such a scheme over the common breech-fed is higher efficiency due to less energy remaining in the rail and lower rail resistive loses. Another advantage is the reduction in the probability of re-strike. However, these advantages are achieved at a cost of higher switching complexity. As a proof of principle experiment, we have constructed a bench-top solid armature railgun with distributed energy sources. Instead of a single, capacitive, breech-fed, energy source, the current is supplied by two storage capacitor banks, placed at different positions along the rail. The switching configuration, which requires a dedicated switch at each capacitor, is realized with sold state switches. The railgun is diagnosed in order to evaluate performance and to appropriately trigger the switches. In addition, experimental results are compared to simulation

Published in:

Magnetics, IEEE Transactions on  (Volume:43 ,  Issue: 1 )