Cart (Loading....) | Create Account
Close category search window
 

Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Zongzhao Zhou ; Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore ; Yew Soon Ong ; Nair, P.B. ; Keane, A.J.
more authors

In this paper, we present a novel surrogate-assisted evolutionary optimization framework for solving computationally expensive problems. The proposed framework uses computationally cheap hierarchical surrogate models constructed through online learning to replace the exact computationally expensive objective functions during evolutionary search. At the first level, the framework employs a data-parallel Gaussian process based global surrogate model to filter the evolutionary algorithm (EA) population of promising individuals. Subsequently, these potential individuals undergo a memetic search in the form of Lamarckian learning at the second level. The Lamarckian evolution involves a trust-region enabled gradient-based search strategy that employs radial basis function local surrogate models to accelerate convergence. Numerical results are presented on a series of benchmark test functions and on an aerodynamic shape design problem. The results obtained suggest that the proposed optimization framework converges to good designs on a limited computational budget. Furthermore, it is shown that the new algorithm gives significant savings in computational cost when compared to the traditional evolutionary algorithm and other surrogate assisted optimization frameworks

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:37 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.