By Topic

Plasma-Assisted Combustion of Gaseous Fuel in Supersonic Duct

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sergey B. Leonov ; Inst. of High Temp., Acad. of Sci., Moscow ; Dmitry A. Yarantsev ; Anatoly P. Napartovich ; Igor V. Kochetov

The field of plasma-induced ignition and plasma-assisted combustion in high-speed flow is under consideration. Nonequilibrium, unsteady, and nonuniform modes are analyzed as the most promising in reducing a required extra power. Numerical simulations of uniform, nonequilibrium, continuous, and pulse discharge effect on the premixed hydrogen and ethylene-air mixtures in supersonic flow demonstrate an advantage of such a technique over heating. At the same time, the energetic price occurs rather large to be scheme practical. A reduction of the required power deposition and mixing intensification in nonpremixed flow could be achieved by nonuniform electrical discharges. Experimental results on multielectrode discharge maintenance behind wallstep and in the cavity of supersonic flow are presented. The model test on hydrogen and ethylene ignition is demonstrated at direct fuel injection

Published in:

IEEE Transactions on Plasma Science  (Volume:34 ,  Issue: 6 )