Cart (Loading....) | Create Account
Close category search window

Propane–Air Mixture Combustion Assisted by MW Discharge in a Speedy Airflow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

In this paper, results are presented from an experimental investigation of propane-air combustion in a stationary microwave (MW) discharge at different conditions. In these experiments, a deeply undercritical discharge is initiated in the base of an electromagnetic vibrator, which is immersed in cold supersonic airflow. Two schemes for mixing propane with air are considered. In the first scheme, a propane-air mixture is delivered through the vibrator and is ignited at the outlet from the vibrator. In the second scheme, propane delivered through the vibrator mixes with air captured by an inlet hole in the vibrator nose prior to being also ignited by the MW discharge at the base of the vibrator. Propane combustion with efficiency of approximately 60% was demonstrated at a mixture velocity up to 200 m/s in the combustion region. The heat release reaches approximately 1 kW at a propane mass flow rate of 2middot10-2 g/s and discharge power of approximately 200 W

Published in:

Plasma Science, IEEE Transactions on  (Volume:34 ,  Issue: 6 )

Date of Publication:

Dec. 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.