Cart (Loading....) | Create Account
Close category search window

Multilinear Discriminant Analysis for Face Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Shuicheng Yan ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin ; Dong Xu ; Qiang Yang ; Lei Zhang
more authors

There is a growing interest in subspace learning techniques for face recognition; however, the excessive dimension of the data space often brings the algorithms into the curse of dimensionality dilemma. In this paper, we present a novel approach to solve the supervised dimensionality reduction problem by encoding an image object as a general tensor of second or even higher order. First, we propose a discriminant tensor criterion, whereby multiple interrelated lower dimensional discriminative subspaces are derived for feature extraction. Then, a novel approach, called k-mode optimization, is presented to iteratively learn these subspaces by unfolding the tensor along different tensor directions. We call this algorithm multilinear discriminant analysis (MDA), which has the following characteristics: 1) multiple interrelated subspaces can collaborate to discriminate different classes, 2) for classification problems involving higher order tensors, the MDA algorithm can avoid the curse of dimensionality dilemma and alleviate the small sample size problem, and 3) the computational cost in the learning stage is reduced to a large extent owing to the reduced data dimensions in k-mode optimization. We provide extensive experiments on ORL, CMU PIE, and FERET databases by encoding face images as second- or third-order tensors to demonstrate that the proposed MDA algorithm based on higher order tensors has the potential to outperform the traditional vector-based subspace learning algorithms, especially in the cases with small sample sizes

Published in:

Image Processing, IEEE Transactions on  (Volume:16 ,  Issue: 1 )

Date of Publication:

Jan. 2007

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.