By Topic

Discriminative Training for Large-Vocabulary Speech Recognition Using Minimum Classification Error

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

The minimum classification error (MCE) framework for discriminative training is a simple and general formalism for directly optimizing recognition accuracy in pattern recognition problems. The framework applies directly to the optimization of hidden Markov models (HMMs) used for speech recognition problems. However, few if any studies have reported results for the application of MCE training to large-vocabulary, continuous-speech recognition tasks. This article reports significant gains in recognition performance and model compactness as a result of discriminative training based on MCE training applied to HMMs, in the context of three challenging large-vocabulary (up to 100 k word) speech recognition tasks: the Corpus of Spontaneous Japanese lecture speech transcription task, a telephone-based name recognition task, and the MIT Jupiter telephone-based conversational weather information task. On these tasks, starting from maximum likelihood (ML) baselines, MCE training yielded relative reductions in word error ranging from 7% to 20%. Furthermore, this paper evaluates the use of different methods for optimizing the MCE criterion function, as well as the use of precomputed recognition lattices to speed up training. An overview of the MCE framework is given, with an emphasis on practical implementation issues

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )