By Topic

Integrated rf amplifier based on dc SQUID

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tarasov, M.A. ; Inst. of Radio Eng. & Electron., Acad. of Sci., Moscow, Russia ; Prokopenko, G.V. ; Koshelets, V.P. ; Lapitskaya, I.L.
more authors

Integrated radio-frequency amplifiers comprising a 4-loop dc SQUID, seriesly connected input coil turns, a resonant capacitor parallel to the input coil, series capacitors at the input and output ports and bias resistors have been designed, fabricated and experimentally studied. A multiloop dc SQUID with parallel loops and seriesly connected single-turn input coils placed inside each loop and integration with the input resonant matching circuit elements and with elements of dc bias circuit allows one to increase signal frequency and reduce the influence of external noise. The amplifiers with three different capacitors have resonant frequencies 560, 656, 758 MHz and bandwidth about 50 MHz. The noise temperature of such amplifiers below 1.5 K has been measured using cold attenuator and room-temperature noise sources. The layout comprising three pairs of such amplifiers placed on the same 15/spl times/24 mm substrate was designed to increase the bandwidth over the bandwidth of the individual amplifiers.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:5 ,  Issue: 2 )