By Topic

Speech Recognition Using Linear Dynamic Models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Frankel, J. ; Centre for Speech Technol. Res., Edinburgh Univ. ; King, S.

The majority of automatic speech recognition systems rely on hidden Markov models, in which Gaussian mixtures model the output distributions associated with sub-phone states. This approach, whilst successful, models consecutive feature vectors (augmented to include derivative information) as statistically independent. Furthermore, spatial correlations present in speech parameters are frequently ignored through the use of diagonal covariance matrices. This paper continues the work of Digalakis and others who proposed instead a first-order linear state-space model which has the capacity to model underlying dynamics, and furthermore give a model of spatial correlations. This paper examines the assumptions made in applying such a model and shows that the addition of a hidden dynamic state leads to increases in accuracy over otherwise equivalent static models. We also propose a time-asynchronous decoding strategy suited to recognition with segment models. We describe implementation of decoding for linear dynamic models and present TIMIT phone recognition results

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:15 ,  Issue: 1 )