By Topic

Very Low-Noise ENG Amplifier System Using CMOS Technology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Rieger, R. ; Dept. of Electr. Eng., Nat. Sun Yat-Sen Univ., Kaohsiung ; Schuettler, M. ; Pal, D. ; Clarke, C.
more authors

In this paper, we describe the design and testing of a system for recording electroneurographic signals (ENG) from a multielectrode nerve cuff (MEC). This device, which is an extension of the conventional nerve signal recording cuff, enables ENG to be classified by action potential velocity. In addition to electrical measurements, we provide preliminary in vitro data obtained from frogs that demonstrate the validity of the technique for the first time. Since typical ENG signals are extremely small, on the order of 1 1 muV, very low-noise, high-gain amplifiers are required. The ten-channel system we describe was realized in a 0.8 mum CMOS technology and detailed measured results are presented. The overall gain is 10 000 and the total input-referred root mean square (rms) noise in a bandwidth 1 Hz-5 kHZ is 291 nV. The active area is 12 mm2 and the power consumption is 24 mW from plusmn2.5 V power supplies

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 4 )