By Topic

The Random Trip Model: Stability, Stationary Regime, and Perfect Simulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Le Boudec, J.-Y. ; Ecole Polytech. Fed. de Lausanne ; Vojnovic, M.

We define "random trip", a generic mobility model for random, independent node motions, which contains as special cases: the random waypoint on convex or nonconvex domains, random walk on torus, billiards, city section, space graph, intercity and other models. We show that, for this model, a necessary and sufficient condition for a time-stationary regime to exist is that the mean trip duration (sampled at trip endpoints) is finite. When this holds, we show that the distribution of node mobility state converges to the time-stationary distribution, starting from the origin of an arbitrary trip. For the special case of random waypoint, we provide for the first time a proof and a sufficient and necessary condition of the existence of a stationary regime, thus closing a long standing issue. We show that random walk on torus and billiards belong to the random trip class of models, and establish that the time-limit distribution of node location for these two models is uniform, for any initial distribution, even in cases where the speed vector does not have circular symmetry. Using Palm calculus, we establish properties of the time-stationary regime, when the condition for its existence holds. We provide an algorithm to sample the simulation state from a time-stationary distribution at time 0 ("perfect simulation"), without computing geometric constants. For random waypoint on the sphere, random walk on torus and billiards, we show that, in the time-stationary regime, the node location is uniform. Our perfect sampling algorithm is implemented to use with ns-2, and is available to download from

Published in:

Networking, IEEE/ACM Transactions on  (Volume:14 ,  Issue: 6 )